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AERODYNAMIC RESEARCH ON FUSELAGES WITH

RECTANGULAR CROSS SECTIO~

By K. Maruh.n

The influence of the deflected flow caused by the fuselage (espe-
cially by unsymmetrical attitudes) on the lift and the rolJ.ingmoment
due to sideslip has previously been discussed for infinitely long fuse-
lages with circulsr and elliptical cross section. The aim of this work
is to add rectangular cross sections and, primarily, to give a principle
by which one can get practicaMy usable contours through simple conformal
mapping. In a few examples, the velocity field in the wing region and
the induced flow produced are calculated and are compared with corre-
sponding results from elliptical and strictly rectangular cross sections.

points in the plane of the fuselage cross section

points in the plane of the mapped cifcle

width of the rectangular contour (always taken as 2
in the examples) -

height of the rectangular contour, ~ =

circular length on the contour measured
in a positive sense (direction)

amount of flow velocity in the infinite

amount of flow velocity in the infinite

singleof flow in the infinite t-plane

angle of flow in the infinite T-plsme

hR

~

from t = 1

t-plane

T-plane

*“Aerodynamische Untersuchungen an Riimpfenmit rechteck?ihnlichem
Querschnitt.” Jahrbuch 1942 der deutschen Luftfahrtforschung, PP. 263-

- 279. (Report by the Deutschen Versuchsanstalt filrLuftfahrt, E.V.,
Berlin-Adlershof, Institute for.Aerodynamics.)

*



2 NACA TM 1414

w(t)

W(T)

vyY Vz

P

p(t)

jt)

‘o

velocity potential in the t-plane

velocity potential in the T-plane

velocity components in the t-plane

regional pressure

pressure in the infinite t-plane

(t)dynamic pressure, formed with V.

constant distance from the y-sxis, or height of the
ting

span of the elliptical wing

ratio of the span to the maximum chord of the
elliptical wing

4Aaspect ratio of the elliptical wing, ~

sideslip angle

value of the rolling moment

11.’INTRODUCTION

In order to find the influence of the fuselage on the wing in a first
rough approximation, one determines the up-wash or doyn-wash field that is .
created by the fuselage boundary flow in the region of the wing (the wing
momentarily assumed as being absent), hence the additional lift distribu-
tion, for example, and the additional moment of the wing. Of especial
importance in respect to the lateral stability, is the rolling moment due
to sideslip caused by sideslip of the fuselage. Research on this rolling
moment due to sideslip has been done by a number of authors.1 To simplify
the research, an infinitely long fuselage with circuler or elliptical
cross section is generally treated. Inasmuch as some practical fuselages
exhibit rectangular cross section, it might be of interest to do research
on these contours, for which the fuselage is also taken as being infinitely
long. The method of conformal mapping permits one, as will be shown in the
following discussion, to obtain practically usable cross sections, without -
as compared with the elliptical contour - having to do much more work to

7 -
‘See Multhopp, H.: Zur Aerodynamic des Flugzeugrumpfes. Luftfshrt-

forschung, Bd. 18, ixg. 2/3, k. 29, 1941, pp. 52-66. (Available as
NACATM 1036, 1942.) Jacobs, W.:

—%
Berechnung des Schiebe-Rollmomentes w

fiirFliigel-Rumpfanordnungen.Jahrbuch 1941 der dtsch. Luftfahrtforschung,
VO1. I, pp. 165-171.
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determine all desired data. Comparisons with the results for the elXp-
tical cross section show that the influence of the corners, especially at
great height, is noticeable and is clearly seen during the rolJ.ingmoment
due to sideslip. Calculations that were made for some cases on the exact
rectsmgle present a general idea of what effect a further sharpening of
the corners would have on the velocity

III. EQUATIONS FOR THE PRODUCTION

CROSS SECTION THROUGH

field.

OF CYTINDERS WITH RECTANGULAR

CONFORMKG MAPPING

1. General

The next task is to determine rectangular figures in the t-plane
(t = y + iz)(see fig. 1) that Me symmetrically to the y- and z-axes,
whose boundaries, through the use of the

axe shown as derived
(T=q+i~=peq.

(
cl

t =t3T+C()+~+

from the boundaries
If one now assumes

equation

C2

)F-”””
(1)

of the unit circle in the T-plane
- because of the symmetrical

realities of the needed figures - that points in the t-plane lying—
symmetrical to the axes are the ssme as syrdnetricalpoints in the T-plane,
then, as one can easily see,

co = C2 =C4= . . . = O (2)

“ cl’ C3’ C5’ “ “ ● ‘eal- (3)

Equation (1) then reads

(

c1
t C3= & T +7+—+ . . .

)

(4)
T3

and gives the foldmwing parameter for the rectangle2 in question

2h the following we use the term rectangle for the rectangular
figure tith rounded corners to differentiate from the exact rectsmgle.
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(5)
y=a[(l+.l)co.f+c3co.5~+. . .]= E3($)
z=a[(l- .l).inO-.in3030-. . .]=h(fl) 1

It is sufficient to regsrd these functions in the interval os1953T/2
because of the symmetry.

To reduce the mathematics involved, we

c7=c9=””” =0” Thus, we consider the

and especially the parameter

[
y=a(l+c1)cos79+c3 COS379

z = a[(l - c~] EMn19 - C3 sin 319

now only use the case
mapping function

+3!
T5 )

+C 5 Cos 579
1

-c 5 sin 501}

(6)

(7)

As is shown in this equation one can get very usable results even in the
ca~e

C5
= O (rectangle Rlj; this means that only one more factor has

to be used than for the ellipse. Expressions with C5 # O were exsmined
(rectangle ~) to see what effects further factors would have.

.
The present constants cl, C3, and C5 were then chosen so that the

relationship ~ = height: width = hR: bR of a basic exact rectangle is --

kept throughout, and so that in this rectangle (definedby eqs. (7)) the
.

relationship fits as is best possible. The nuniber a >0 is only a scale
factor and determines the size of the figure in the t-plane; if the
definite body width bR is used in equations (7), because bR/2 = g(0),

the result is

&
2

a= (8)
1+C1+C3+C5

bR
In the exmnples a is determined so that ~ = 1.
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2. Equations Used to Determine cl, C3, and C5

Without discussing in detail the derivation, which is found in
part V, the eqmtions used to find the constants of the desired shapes
are put together by using a given lc-val.ue

1. Rectsmgle Rl: ~=a[+~+$

(a) O<tc~l:

c3=- & C1=1+9C3

(b) 1 ~ R c co (practical conmmn value):

1
‘3 = -m C1=-1-9C3

(( ))c1 ~+~2. Rectangle ~: t. a T +--+

(a) O<~S&:
,

2(<1
= practical conmmn value):

C5=$-’ cl=-25c5~ C3=-$

(c) ;sK <m:

3 25c5
c5=8g +&K’ cl=~c5 -1> C3=- 3
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Worked examples:

1. K=l: = ~ (square
‘3 =

-*, Cl=o, ‘a

K = 1.5: =3=-&’ cl=-~’a=~

NACA !l%l1414

Q)

,

—

K = 1.5: J-- cl=-+, C3=-$J a=gC5 = 135’

In the case ~ = 1, R1 and ~ automatically coincide with the

squsre Q. (See fig. 2 where the corresponding circle and the exact
square Qex are shown for comparison.) The cases R = 1.5 are shown

in figure 3 together with the corresponding ellipse snd the exact
rectangle Rex. It csn be shown that R1 and R2 will be an increasing

distance apart as K exceeds 1.

IV. USE OF FLOW FREE OF,CIRCULATION

1. General Equations for ‘Y and Vz in Case of an

(Expression of the Form t=a7+~+~+~ \

If W(T) describes the
the T_plsne, (T = peifl),one
since w(t) is the velocity

[ ‘ +’ +/

velocity potential of the circular flow in.-
arrives at the velocity field in the t-plane,
potential existing there, from the equation

dw dW 1—=— —
dt dr & (9)

dr

Furthermore, if V(t) and a~t), (or V&) snd a$)) (see fig. 1) stand

‘forthe velocity ~d direction of the fluw (relative to the negative real
axis) at infinity of the t- (or T-) plane, then

.

&) . It, (m) I&)

Is generally true if these points correspond to each other.



NACA TM 1414 7

.

.

.

In the special case

t =
(

ar+>+~+~
T3 T5 )

(11)

the velocity components ‘Y
and V= of the flow in the t-plane for

~(t) . ~ (f~w pua~el to the negative y-tis) are derived frOm
m

with
cl,

( )

25c52 + , 3CJ_c3 + 15C3C5 c19C32 — -—
N=l+—

Cos 219+
~4 ‘~+ p= ~6 ~lo ~2

(5C1C5

)

3C3 10C
2—-—

~8 ~4
Cos 43 - —

~65
COS 63

(t)while.in the case a= = Ye/2 (flow para13el to the positive z-axis)

iF=+2+(%-3)c0s2’-(3+
sre obtained. If one wsnts to find Vy and Vz
the t-plane, one must, of course, first find the

T= ~eid by using the reverse of equation (lZ).

(15) ‘

in particular points of
corresponding values
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2. Results of Calculations

As proved by equations (12) to (15), (for
K ‘l(a~m”-and VZ on the parallels &rawn3 at an interval

hR hR 3hR hRof~.o,~,~~ ~ on the y-sxis were calculated for the

examples listed in part III; the results are shown in figures 4, 5, and
11 to 14. In figures 6 to 10 and 15 to 23, the results sre compared
with the corresponding flow around an ellipse and (in some cases) around
an exact rectangle. One can then readily see that, excepting the
vicinity of the corner, the velocity fields of the rectangle and the Rex
(in this case Q and Qex) cliffer comparatively Mttle. The difference
in the field around an ellipse (or a circle) is greater. Figures 24 to 26
show the pressure distribution on the contours plotted against the body
length; in these plots, the effect of the corners is especially noticeable.

(b) Induced rolling manent.- The results from (a) were finally used
to determine the rolJ.ingmoment due to sidesllp caused by the boundary-
layer flow, exerted by inclined flow on m elliptical wing. This was to
be done by using the method mentioned in the introduction, in which the
influence of the induced moment on the wing is not considered. The calcu-
lation was carried out for the following examples (c’- = 5.5)*:

1. A= 12.7 A= 10 bR/b = 1/15 (High aspect ratio)

2. A= 7.6 ~=6 bR/b = l/12 (Medium aspect ratio)

3. A= 3.8 h=3 bR/b = 1/6 (Low aspect ratio)

and was based on the equation

31n the de-ljerdnatj.onOf T from equation (U.), it proved practical
to assume p and to calculate O through successive approximations from

T1 t t CM3-5‘=) T2 = ~ - — . . . since this did not depend on finding
T1 T15’

‘Y and Vz at determined points of these parallels.
4See Birkley, G.: Two-Dimensional Potential Proble,m for the Space

Outside a Rectangle. Proc. hndon ~th. SOC., (2), 37, 1934) PP. 82-105”
Here the conformal mapping of the boundary field of”an exact rectangle
on the outside of a unit circle is made calculable. The necessary calcu-

lations are of course considerablymore extensive them on our figures RI
and ~.

*NACA reviewers note: c’- may be defined as section lift curve
slope.

.



2

.

.
dcL

J

~lp v=

/ ()

2 J
32A—=. —l- ~ydy (16)

d$

()

4A -b/2 Vjt)
11— +2b2
c ‘=

27 to 29, were calculated for different
widths were assumed to be equal (bR = 2).

The results, shown in figures
fuselage shapes for which the
The results, excepting those concerning the circle, were found through
graphical integration, where in the interval -1 to 1 (fuselage width)

/
~z v~t) = O was assumed for all high positions. The results show a

strong influence on the corners, besides the great influence of the high
position. The differences from the el.lipse(orthe circle) are noticeable;
the rectangles RI and R2, however, shw o- s~~ ~fferences ‘0 ‘hat)

in general, the simpler shape RI should be sufficient.

V. DERIVATIONS OF EQUATIONS IN PART III

1. General

TO achieve a reasonably rectanguM.r figure, one must assume (see
eqs. (5)) that, for O < ~ < Yr/2,

g($), h(d) >0, g’($) <0, h’(a) >0 . . .

.
is true. In the end points of the
We further want to avoid points of
then, because of

dz=

w

(17)

interval, equal marks can be used.
inflection on the needed contour;

Ui!L
g’(79)

d2z g’h” - h’g”—=

& (13’)3

d2y h’g” - gIhl1
. —= (18)

dz2 (h’)3 “ “ “

. %quation (16) is derived from the known equation for the rollhg
moment of sn eU.iptical wing, if one replaces the geometrical angle (of.-
attack) by ~.

v~t)
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of course .

g’(0)h’’(O) - h’($)g’’(~) >0
(
O< a<:

)
(19)

is proved.

The range of values of the nunibers cl, C3, . . . is subject then

to certain restrictions that result’%rom conditions (17) and (19); they
are defined by the fixed side ratio of the rectangle and through the
hypothe is that, for 8 = O and 8 =

~
ti/2,the contour will have flat

points.

6A curve y(x) (or x(y)) has a flat point of the nth order
(n odd) in ~ (or YO) if y (or x) is differentiable (n +2)
timessnd y“(~) =y’’’(xo) = . . . = y(n@(~) = o (or

X“(yo)=x’1’(ye)=. . .=x (n+2)(y. = O)) is valid. If in this case
the flat points for O =0 (orO= fi/2)should enter, then through con-
tinuation of the differentiation started in equation (18), it is shown
that because of

() ()g’(0) =g’’’(0)=O. .=O (or b’~=h’ ’’~=... =0)

g d3y = .0=—
dz ~=o dz3 79=0 “ “ “

~ $): )is always automatically satisfied if h’O # O (or g’ ~ O and that

with respect to equation (17), h’(0) > 0 (or g’ ~ < 0 is true. In

order that

d2y d4y dn+~
=— =... =— =0

z O.c) dz4 19=o dzn+l 8.O

d2z 4 dn+lz =0Or ~ ~A=~ ~A= ...=_
dzn+l

2 2
3$

be valid, the

()
(or h!l~ =

2 Jn+q:)=0) must exJ+l)(0) = o
relationships g’l(O = ‘~fl(0)= . . . =g

()
h~!ll : = . . . =

.
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.

v As already stated in part III, our representative equation (4) should
show the boundary field of the desired shape clearly conforming to the
circumference of the unit circle of the ‘r-plane;this condition is ful-
filled when the constants Clt C3, . . . are so taken that t’(7) is
different from zero in the entire boundary fiel.d.7 Now one has only to
prove that the derived representative function will be sufficient to
accommodatethis restriction.

One wi~ naturally attempt to use as few factors as possible in
equation (1) - that is, with flat points of a low order for 19= O
and O = Yr/2. AE was shown in part III, the expressions up to and
including 3 ~d c z~ give Useable values. To add further

c3h 5/
factors would probably not improve the quality of a rectangular fuselage
cross section; certainly such sm extension would not develop any diffi-
culties and could be performed without complications in the following
way.

2. The Rect=gle R1

The equations brought forward

(t=a(.+++~))

from equations (5) for g(~) and h($)
are:

g($)
[

=a(l+cl)

[h(~) = a (1 - cl)

Cos 4 + C3 Cos 34]

sin $ - 1C3 sin 3~ }

(20)

We choose a flat
note 6) h’(0) >

J

point of the first order for ~ = O; then, (see foot-
0. Therefore

1- C1 - 3C3, >0 (21)

and further g“(0) = -a~l+ cl) +9c3]= O, that is,

cl=-l- 9C3 (22)

7See Schmidt, B. Harry: Aerodynsmik des Fluges. (Berlin snd Leipzig),
1929, p. 98.

*NACA retiewer’s note: The expression should read @5. (See
eq. (6).)
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must be true. Of course, ~
I

is then equal to 0, which is the case
dy 4*

()
when g’ ~ <O or

2

l+c~- 3C3 >0 (23)

TMs and the deduction (21) is correct, with reference to equation (22)
if

-;<C3<0

is true. The still available constant C3
necessary side ratio IC of the rectangle.
derives, taking equation (22) into account,

(24)

is needed to determine the
From equations (20) one
at

(25)

or

1
c3=-— 5+4K

(26)

Finally, the field of values for
C3

and, therefore, also for ~ must

be found, for which field the restrictions in equations (17) and (19) are
taken care of. For this purpose we write g and h in the form

[(g(ti)=a 1+

[(h(0) =al-

from which, with reference

c1 - 3C3) Cos d +4C3 COSTd11
cl - 3~3c3) sin O +4c3 sin IJ
to equatia (22), we get

(27)

(28)

.

.
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Further,

g’(19) = 12ac 3
3

sin $

h’(~) =
r(

2a 1 + 9c3) cos 79 -

end

g“(o) =

h“(t) =

are true. To make the

L

36ac3 sin2 ~ cos t

[
-2a sin 191 + 9C3 -

1
6C3 COS3 +1)

1)18c3 COS2 ~

functions g(~), h(n) >0 for O <0 <~

-A< C3<0
5

(29)

(30)

(31)

must be valid. (See eqs. (28) .) Then g’ <0 is also correct (see
eqs. (29)), while the expression h’ > 0 requires that, for all values

of O when O < 0 <~ the expression.2> 1 +3C3(3 - 2 COS2 19)>0, that
is,

(32)

.

is true. As one can easily calculate, equations (29) and (30) give

.

g’h” - h’g” =
( )

-24a2c3 sin2 O 1 + 9c3 + 2 cos2 8 , . . . (33)

and one csm see that condition (19) is satisfied if Cz < 0 and

1+9C3+

is true.

Condition
.

.

2 COS2 O > O; therefore,
/

These equations
(34) stands for

1<--=
9 c3<0 (34)

also satisfy conditions (24), (31), snd (32).
the field of values

(35)
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for ~ because of equation (25). Taking equation

t ‘(T)

( )

.*l +2&2.22
74

(22) into account,

(36)

is true; therefore, in consideration of condition (34),

( ‘l*l-l~~>al!- (1+9C3) +3c3_j=-6ac3>0
It’(T)! ~al

is found for ITI 21;

circle ITI=l.

As one notices in

the zero points of t’(T) lie inside

further analysis, the assumption that

(37)

the

the flat ,
4C3

point of the first order lies at 8 = ~, at c1 = 1 + 9C3, and IC= -
/ 1 + 5C7

[
in this

0>C3Z

interval

case )+“ To satisfy conditions (17) and (19)
/

c3=-

- ~ must apply here, which for ~
9

corresponds to the

O<KS1.

From the preceding discussion it is seen that the unit circle can
actually be changed into rectangular figures of smy desirable side ratio

through the use of the representative equation t =
( )

aT+>+3.
T3

Information about its practical use is given by the exsmples in part IV.

(( c1 C3 C5

))
3. The Rectangle ~ t=a T+7+—+—

T3 T5

(a) Two flat points of first order.- We now set:

g($) = .[(1 + c~)cos O + C3 .0s 30 + C5 cos X

11h($) = a[(~ - cl)sin ti- C3 sin 38- C5 sin ~]
(38)

.

.

and assume one flat point of the first order for each O=Oand S=~*

()

2’ .

this means the functions g“(0) =h” ~ = O must apply (see footnote 6),

or .
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1+ C1+9C5

under the restrictions

+ 25c= = O 1- C, + 9CZ - 25c= = o

h’(0) >0, g’(~~<0, that is
NC/

1- C1 - 3C3 -5C5>0 l+c~- 3C3 + 5C5 >0

must be true. lhmm equations (39)

Lc3 = - ~ c1 = -25c5

follows and with these values condition (40) is satisfied for

-*<C5<*

(39)

(40)

(41)

(42)

The still unused constant c is again used for the side ratio. As one

csm see frm equations (38) %d equation (41),

(43)

We now determine the restrictions to which c and therefore IC (because
of equations (17) and (19)) are subject. A M5ttle calculation, in con-
sideration of equation (41), results in

g’(19)= L-4a sin3 O ~-
)]25c5 + 20c5 sin2 19

h’($) =
( )/

4a COS3 d $+25c5 - 20c5 cos2 $
(45)
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g“(o) = ( )-4a sin2 O cos 791 - 75c5 + 100c~ sin2 O

( }

(46)
h“(~) = -4a COS2 0 sin fll+75c5 - 100C5 cOS2 $

)

from which

g’h” -h’g!’ = 16a2 sin2 + cos
[

2ti$+20c5 1-375c52 - 40C5 COS2 ~

(47)

is derived. One can easily see that for O < 0 <~, g’ <O and h’ >0

are definitely satisfied if

l=<L
-75 ‘5= 75

(48)

is true. For these values g(a), h(0) >0. The expression (47) is

positive for IC51=* in the interval 0<0 <~; because of the con-

struction of the quadratic equation in equation (47) on the right side in
the square brackets, this equation applies to the entire interval (48).
Restrictions (17) and (19) are hereby satisfied if C5 is subject to
restriction (48); therefore, the side ratio is within the interval

(49)

which should take care of the field in question for practical fuselage
cross.sections.

To discuss the position of the zero places of t’(7) before con-
cluding,,we write our representative equations with respect to equa-
tions (41) in the form

( )2Z5 I +>
t(T) =S. T—-——

T 9T3 ~5
(50)

Because of expression (48) we derive for IT121

lt’(T)l
I

25c5
=al+— 1( )$+$-y~aw$-+’o(51)
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. The zero places for t’(T) lie inside the circle ITI = 1.

(b) A flat point of the third order.- Another method of determining
the available constants consists of assuming one flat point of the third
order instesd of two flat points of the first order for $ = O or $ = ~

It willbe shown that the side ratios not included in expression (49) can
hereby be derived; this case tillbe briefly discussed.

If the flat point for O = O is used, then

1 + Cl + 9C5 + 25c5 =0 ~d 1+c1+81c5+625c5=0 (52)

or

=C
C3 =-3 5 C1=50C5-1 (53)

is correct. Since restriction (40) is satisfied because of h’(0) >0,

.

.

.

g’(g) <o, the limits for

are hereby found. Taking

g(a) =

h(a) =

g’(o) =

h’($) =

g“(o) =

htl(~) =

and

(16ac5 5 cos

into consideration equations (53), we have

\

79 10 )-—COS3 4)+COIJ 4
3

t

(55)
20C sin3 ~ .+ 8C5 sin 154
352a[(l.- IZ$sin 19-

-80ac5 sin5 d

2a~ -75c5Jcos19+IOOC5COS319 - &oc5 COS5 d ’56)IJ

J

1

-400ac5 sin4 + Cos a

[
-2a sin O 1 - 75C5 +

g’h’‘ - h’g” = 160a2c5

300c5 COS2 79- 200c5

(
sin4 O 1 + 4 cos2 19

11COS4~
(57)

)- 75C5 (58)
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and without much trouble one finds that for

O<c Q5 75

restrictions (17) snd (19) are satisfied. In respect to

~_3-89c5 or 3
64C5 C5 = 64k + 89

this corresponds to the R-interval

with which the
established.

lstc<m+

connection to the right side of equation (49), is

The representative function then is

t(T)

(

.aT+2&-2#+~
T

)

Therefore, with ITI 21,

it’(d
I

1- XC5 +
=al+

T2

keeping condition (59) in mind,

(59)

(60)

(61)

(62)

Is correct. If the flat point of the third order lies on the point O = ~

cl = 1 + 50C5 25
C3=TC5 1

64c5
K

3K=- or
3 +89c5 c5=- 64 +89~

/

(64)

.

.

.
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Figure 1.- Illustration of the symbols.
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.

. F@ure 2.- Firstquadrantwithcircle(Kr), square Q, and theexact
square %x (~= 1).
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Figure 5.- Velocity field for the square Q
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Figure .23. - Velocity field; comparison between ellipse, RI, R2, and
&x. 2zo/hR = 1 C@ = 900.
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